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Abstract-In this paper an equation for the heat-transfer coefficient from a horizontal surface to a 
boiling liquid is established starting from a physical mode1 for the nucleation and hydrod~~~l 

processes. 
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NOMENCLATURE 

thermal diffusivity ; 
exponent ; 
drag coefficient ; 
specific heat of the liquid; 
diameter of a bubble; 
2Ro; 
gravitational acceleration; 
mechanical equivalent of heat ; 
size of a gas filled cavity; 
average value of the sizes of the gas- 
filled cavities; 
average distance between successive 
active centres; 
average distance between successive 
gas-tiled cavities; 

m, mI, mu, mm, mIv, exponents : 
number of active centres per unit 
area; 
number of gas-filled cavities per unit 
area; 
pressure ; 
su~r~~ration of the liquid; 
heat transferred per unit area in unit 
time; 
latent heat of vaporization; 
radius of the bubble; 
radius of the bubble at the moment 
when the bubble breaks off; 
length in Nusselt number; 
time; 
temperature in the bulk of the liquid 
(W; 
temperature at the wall; 

AT=T,-TTI; 
velocity in the resistance term of 
equation (26) ; 
average value of heat-transfer coeffi- 
cient during the time interval TV; 
average value of heat-transfer coefficient 
during the time interval TV; 
average value of the heat-transfer co- 
efficient on the surface LS at the time t, 
measured from the moment when the 
nucleus begins to grow; 
heat-transfer coefficient given by 
equation (14); 
specific gravity of the liquid; 
specific gravity of the vapour; 
dynamical viscosity; 
angle of contact between bubble and 
wall at the moment when the bubble 
breaks off; 
thermal conductivity; 
kinematic viscosity; 
liquid density; 
length given by equation (4); 
the duration of bubble growth on an 
active centre; 
time interval which elapses from the 
moment when a bubble breaks off 
until a new bubble starts growing on 
the same active centre; 

T=T1+T3; 

0, surface tension liquid-vapour; 

NU = 4; 

f91 
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Pr = f ; 

Re, Reynolds number; 

Re 
1 

_ 2R (dR/dt) . 
v ) 

Re ='R, 
2 ry”v’ 

INTRODUCTION 

THE CORRELATION of the experimental results 
regarding heat transfer from a horizontal surface 
to a boiling liquid has been made in literature 
by deducing-from certain physical considera- 
tions-several dimensionless groups and by 
experimentally determining the functional 
dependence between them. In all these papers 
one considered that the rate of heat transfer is 
determined by the stirring action of the bubbles. 
The differences between the numerous correla- 
tions proposed [l-S] arise from the way in 
which are taken into account: (i) the hydro- 
dynamic process of stirring of the liquid in the 
vicinity of the heating surface and, mainly, (ii) 
the nucleation process. The points of view of the 
different authors have been examined critically 
by Westwater [9] and Kutateladze [lo]. 

The mixing caused by the bubbles traversing the 
liquid renders the temperature uniform through- 
out the bulk of the liquid, so that a sensible 
temperature variation exists only in the im- 
mediate vicinity of the heating surface. Conse- 
quently the rate of heat transfer is determined 
by the hydrodynamic process taking place in the 
liquid in the immediate vicinity of the heating 
surface. The greatest part of heat is transferred 
directly to the liquid which, owing to super- 
heating, transfers it further on to the surface of 
the bubbles growing on the active centres or 
traversing the liquid. Recently [15, 161 it has 
been suggested that for large heat fluxes the rate 
of heat transfer is determined by the vaporiza- 
tion of a liquid microlayer at the base of the 
bubble into its interior. These cases will be 
treated in another paper. In the following we 
shall consider that the rate of heat transfer 
depends upon the motions taking place in the 
liquid at the immediate vicinity of the heating 
surface, these motions being caused by the 
growth of the bubbles on the active centres of 
the surface. 

Let us therefore consider (a) the problem of 
the growth of a bubble on an active centre, and 
(b) the problem of the physical meaning of an 
active centre. 

However, the mechanisms proposed in the 
above mentioned papers do not permit the 
elaboration of a physical model which could 
serve for a quantitative formulation of the 
problem of heat transfer in the case of boiling. 
Some attempts to propose mechanisms which 
could permit such quantitative formulations 
have been made only recently in references 
[l l-141. However, while the models proposed 
by Zuber [12] and Tien [14] refer only to the 
hydrodynamic process, the model proposed in 
[ 1 l] and [13] contains a description of both the 
hydrodynamic and the nucleation process. 

(a) A vapour bubble grows on an active centre 
according to an expression of the form : 

R = (T, - Tl) cy’ (mp P’S 

ry” (I) 

This paper presents a synthesis of the author’s 
earlier results [ 11, 131. 

This equation has been established by Forster 
and Zuber [ 171 for a vapour bubble growing in a 
superheated liquid and may be used in a first 
approximation for a bubble growing on an 
active centre of the heating surface [18]. 

The bubble breaks off from the active centre 
as soon as its radius R becomes equal to R,. 

For the radius R, of a bubble departing from 
an active centre the equation generally used is 

MECHANISM OF HEAT TRANSFER FROM A 
HORIZONTAL SURFACE 

(2) 

In the case of nucleate boiling, in certain Equation (2) has been established under the 
privileged points of the heating surface (active assumption that the bubble breaks off when the 
centres) bubbles are formed continuously and bouyant force and that due to surface tension 
break off as soon as they reach a certain volume. become equal. Cole [19] has pointed out that at 
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large heat fluxes the resistance force of the liquid 
must be taken into account too, but we have not 
yet an equation for R. which may be used in this 
case. 

The duration TV of bubble growth on an 
active centre may be estimated by means of 
equations (1) and (2) 

At the moment when the bubble breaks off, 
a new element of liquid comes into contact with 
the heating surface, and a certain time interval 
TV elapses until a new bubble starts growing on 
the same active centre. From the experimental 
data of Jakob [I], obtained for relatively low 
heat fluxes. it follows that TV and 7: are of the 
same order of magnitude. On the other hand, 
the experimental data of Westwater and Sant- 
angel0 [20] confirmed by those obtained by 
Donald and Haslam [Zl] show that for large 
heat fluxes rZ < 71 . 

(b) From thermodynamic considerations one 
may draw the conclusion that ??te formation of 
growing vapour bubbles, in a liquid subjected 
to boiling, requires a certain superheating of the 
liquid as well as the presence of nuclei, i.e. of 
bubbles whose radius is larger or equal to 
pc [l, 22, 231. 

(4) 

Clausius-Clapeyron’s equation allows equation 
(4) to be written 

(5) 

The theory of nucleation in the homogeneous 
case* shows that the rate of formation of the 
nuclei is small (even practically negligible) up to 
a certain critical value of the ratio (p + Ap)/p 
but becomes infinite for this critical value [24]. 
Therefore, if the nuclei would only appear owing 
to statistical fluctuations, there would follow 
that the liquid would boil gently until in the 

* In the heterogeneous case which is of interest in this 
paper, things do not generally stand otherwise, from a 
qualitative point of view, if the solid surface is “smooth”. 

vicinity of the heating surface it becomes 
sufficiently superheated for the ratio (p + Ap)/p 
to reach its critical value. However, once this 
value is reached, the rate of nucleation becomes 
infinitely high and for this reason the layer of 
liquid in the immediate vicinity of the wall is 
spontaneously converted into vapour. The rate 
of nucleation in the case of nucleate boiling does 
not depend on the superheating (Ttc - Tz) as 
shown above but is much higher. This fact is due 
to the structure of the heating surface, as has 
been proved conclusively by Corty’s and Foust’s 
experiments [25]. These authors ascertained that 
the rougher the surface, the more intensive is the 
heat transfer in the case of boiling. This might 
be explained by the presence of gas-filled 
cavities (pits and scratches [26-281) on the metal 
surfaces, which can, for certain values of super- 
heating, play the part of nuclei. During boiling, 
the gas is eliminated, so that the continuation of 
boiling is rather difficult to explain in this 
manner. Corty [29], however, put forth the 
hypothesis, also sustained by i’vlesler and 
Banchero [30], that each vapour bubble breaking 
off from the heating surface leaves behind it an 
extremely small bubble. The continuation of 
boiling could therefore, be explained possibly 
in this manner. In other words, the presence of 
gas-filled cavities on the metal surfaces initiates 
the boiling, but it continues owing to the small 
bubbles left by the large ones which break off. 

If we assume that these cavities are of conic 
shape, we may say that such a gas-filled cavity 
becomes an active centre as soon as the super- 
heating of the liquid is strong enough so that 
the size I of the gas-filled cavity may be given by: 

20 Tl 

’ = (T, - Tl) y”rJ’ (6) 

This conclusion has been arrived at in a 
number of papers [31-331 and is of fundamental 
importance.in deducing an equation for the heat- 
transfer coefficient. 

HEAT-TRANSFER COEFFICIENT 

The process of heat transfer is characterized 
by a double periodicity: a temporal periodlcity,t 
~- 

t This temporal periodicity is not thesame for each 
active centre. 



The group [2R (dR/dt)]/v has the structure of a 
Reynolds number. 

The average value al of at for the duration TV 
of the growing stage of the bubble is given by 
the equation: 

2R(dR/dt) v R 

V 
,a,Z d; 1 

wherefrom 

at time intervals T = To + 7a and a spatial quasi- 
periodicity, at distances L (L being the average 
distance between successive active centres).* 
Therefore, the process taking place on a surface 
of area La around the active centre, in the time T, 
characterizes the process of heat transfer on the I s ‘I 

entire plate. It is therefore reasonable to define a1 L- at dt. 
the heat-transfer coefficient as an average, both on 71 0 

the surface La and in the time T. (Obviously, for Therefore, 
the time T, an average value must be considered.) 

In the growing stage of the bubble on an active 
centre the stirring caused by this growth in a 
point situated within a surface of area La around 
the active centre considered, depends on the 
radius R of the bubble, on its rate of growth 
dR/dt, on the dynamic viscosity 71 of the liquid, 
on the density p of the liquid, on the distance to 
the active centre, on the distances from the point 
considered to the neighbouring active centres 
and on the radius of the bubbles and their rate 
of growth in these neighbouring centres. The 
dependance on the latter distances and lengths is 
due to the stirring caused at the point taken into 
consideration by the growth of the bubbles in 
the neighbouring active centres. For the sake of 
simplicity, it will be assumed that, at a certain 
moment, all the bubbles have the same radius. 
The heat-transfer coefficient at the point taken 
into consideration depends on the quantities 
mentioned above and on the thermal conductiv- 
ity h and the specific heat c. Dimensional con- 
siderations permit to write for the average value 
of the heat-transfer coefficient on the surface La 
at the time t, measured from the moment when 
the nucleus begins to growt 

al& 
---= 2 

2lJdRldt) v R, 

x 

F 
---. 

I 
(10) 

V ‘a’ L 

d -_=p 
[ 

2R (dR/dt) v R 

x T>L’ 1 (7) 
V 

Equation (1) shows that R (dR/dt) is time in- 
dependent, having the value 

Some comments will now be made with respect 
to the ratio R,/L which appears in equation 
(10). Let us denote N the number of gas-filled 
cavities per unit area. For a given superheating 
AT of the liquid in the immediate vicinity of the 
heating surface, only those gas-filled cavities for 
which I 3 (2~ Tl)/(ry”JAT) are liable to become 
active. Denote by pl the distribution law of the 
cavities. In other words Np, dl represents the 
number of gas-filled cavities having 1 comprised 
between I and I + dl. The function IJXJ is depen- 
dent on I and dimensional considerations make it 
certain that p is dependent on 1 through the 
dimensionless ratio I/I,, I, being a length whose 
significance will be discussed below. It is, 
generally speaking, hardly probable that lo 
should be the only parameter appearing in the 
expression of p. One must therefore consider 
that p(l/ZO) only characterizes a certain surface. 

The fraction of the number of cavities, which 
is active for a certain superheating, is therefore 
given by 

dR 1 

I 

cy’ (w)“~ AT a 
RX=? ry,, 

I 
. 

From the average value i of 1 
* A spatial “quasi’‘-periodicity is mentioned since the 

distance between the active centres is not the same. 
t The form of the function F depends, too, on the 

i = Jo” 1~ (l/lo> dl const , 

so” q-~ (I/lo) dl - ’ ’ 
geometric arrangement of the active centres on the heating 
surface. it is seen that I0 is proportional to i. 
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For a random distribution of the active 
centres, the average distance L between succes- 
sive active centres may be estimated by aid of the 
expression 

A MODEL FOR THE ~ROD~~C~ 
PROCESS 

Let us consider a group of active centres, with 

L = p1/2 @-l/Z -_ L, #-l/2, 

Therefore. 

an average distance L between successive centres 
and let us assume for the sake of simplicity that 
simultaneously in each centre there appears a 
bubble nucleus. It is plausible to assume, that 

(12) in the immediate vicinity of the heating sur- 
face the liquid flow, caused by the growth of 
the bubbles, is nearly parahel to this surface 
up to a distance L/2 from the active centres, 
beyond which it becomes practically normal to 
the heating surface, the liquid mixing up with 
the bulk. 

In equation (12) there appear two “lengths” 
which are characteristic for a given surface, 
namely: the average distance L, between the 
gas-filled cavities of the surface and the average 
value 1’ of the sizes of these cavities. 

As pointed out above, it is possible (and even 
probable) that the function cp(l/lO) (and therefore 
also the function $) characterizes only a given 
surface. 

Therefore, for a given surface, there results 
from equations (10) and (12) 

a& F 2R (dR/dt) Y Ro -_= 
h 2 Y -‘,, L, --. ~1121. (13) 

The heat-transfer coefficient may be defined by 
means of the equation: 

~171 + a23 
a= 

7 f (14) 

where “z is the average value of the heat-transfer 
coefficient during the time interval TV. 

Since, for usual values of heat fluxes TV < TV, 
the heat-transfer coefficient a, corresponding to 
the growth period of the bubble coincides with 
the heat-transfer coefficient a. 

The group [2R (dR/dr)]/v which appears in 
equation (13) may be also written by using (I), 
(3) and a = q/(Tto - 7i) in the following 
equivalent forms : 

2R (dR/dt) 
V 

wherefrom one may draw the conclusion that 
U11 

aq=f($v, ;,$ &J. (16) 

In order to establish the form of the function f 
a physical model for the hydrodynamical process 
is needed. Such a model will be suggested in the 
followinn section. 
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We shall assume that this motion is quasi- 
stationary and that at each instance along the 
distance (L/2) - R one may use for the heat- 
transfer coefficient the equation which is valid 
in stationary case for a semi-infinite fluid in 
laminar flow along a plate, the liquid velocity 
in the initial xjoint being equal to the growth 
velocity dR/dl of the bubbles. A model some- 
how nearer to reality would correspond to a 
radial motion, on a plate, of a liquid which has 
its sources distributed on the lateral surface 
of a sea-ignite cylinder normal to the plate, 
the liquid velocity in the initial point being 
proportional to dR/dt. Such a model is at 
present under investigation; it will be published 
later on. The simplified representation used in 
this paper is a good approximation of the above 
model for all times for which L/2 is not too large 
as compared with R. 

With the assumptions mentioned above the 
following expression is obtained for the average 
of the heat-transfer coefficient over the distance 
(L/2) - R: 

dR/dt l/2 

u; = 0.68h 
v{(LP) - RI 

IW2. (17) 

Since only a fraction of the heating surface 
is in contact with the liquid, the remainder being 
covered with vapour bubbles, we may write, in 
first approximation, the following expression for 
the heat-transfer coefficient at : 
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Therefore 

(19) 

In a first approximation we use for the radius 
R, equation (1). 

If we replace dt in equation (19) by (dt/dR) dR, 
11.e obtain, after some transformations, the 
following final equation [13] 

where* 

(0.399 0.127~~ --~ 0.05 sin u. 

+ 0.036 sin 2u, -~ 0.016 sin:’ u,) (21) 

and 

RO 
ziO=arccos 4~ --I . 

t 1 
The function FS is plotted in Fig. 1. 

DISCUSSION OF THE EQUATIONS 

The equations proposed in literature for the 
correlation of the experimental results may all 
be written in the general form 

NM == const. Rem Prm’. 

The differences between them consist in differ- 
ent choices of the characteristic length and 
velocity in the expressions of Nusselt and of 
Reynolds number. 

Forster and Zuber [5] use for Reynolds 
number the expression 

* For integration the change of variable cos u = 4x - 1 
has been made. 

whilst other authors use the ratio? 

Re 2 s yR” 
ry”v’ 

For the characteristic lengths which appear in 
Nusselt’s number, Kruzhilin [2] uses the 
expression R, (pc/Ro)ml’, Kutateladze [4] the 
expression 

and Forster and Zuber [5] equation (1) in which 
t112 is replaced by (20/Ap)~‘~ (Y’/gAj>)l/l. We 
remark that the length s takes into account, at 
least partially, the nucleation process. The draw- 
back of these correlations consists in the fact 
that the structure of the heating surface is not 
taken into account. 

In an other series of correlations one uses for 
s expressions of the form s = RO(nR~)ml”, 
where n represents the number of active centres 

t We remark that using equation (3) one may easily 
show that Re, and Re, are related by: 
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per unit area [8]. Through n the strncture of 
the heating surface is taken into account 
this type of correlation cannot be used as long 
as the manner in which n depends on LIT is not 
known. 

The equation proposed by the author [l I] 
removes, at least partially, the deficiencies of the 
two types of correlations mentioned above. 
Equation (16) takes into account both the struc- 
ture of the surface and the manner in which n 
depends on AT. 

A detailed comparison with experiment of the 
equations obtained is not yet possible, for the 
following reasons : 

(a) the distribution law of cavities depths is 
not known; 

(b) no information is available concerning the 
two “lengths” I, and L, which according to the 
theory developed here characterize the heating 
surface ; 

(c) we do not know an expression for R, except 
for the limiting case of sufficiently small heat 
fluxes. 

Moreover, even if all this information were 
available, it is not very likely that a quantitative 
agreement with experiment could be obtained, 
mainly, because of the numerous approxima- 
tions made in deducing equation (20). 

We notice however that the equations obtained 
seem to be in agreement with the experimental 
results obtained by Nishikawa et al. [34] and by 
Gaertner and Westwater [35]. Nishikawa et al. 
[34] found that for water boiling on a smooth 
horizontal brass surface, 

a N $3 7 w> 

where y1 is the number of active centres per unit 
area. More recently Gaertner and Westwater 
have shown that 

a N @43* (23) 

If one supposes that R, does not depend on 
AT, equation (20) leads to 

If function Fj is written in the form F3 N (R,/L)b 
one obtains for the exponent b a value close to 
3. Equation (20) leads therefore to a dependence 
of the form a - ATnXf’. Since n increases with 

increasing AT, it follows that equation (20) is not 
in disagreement with equations (22) and (23). 

Equation (20) permits also, to a certain extent, 
to justify theoretically the following empirical 
equation, (W), proposed by Forster and Zuber 
for the heat-transfer coefficient at the maximum 
flux* 

7 = O-0015 R$‘Q pyll3. (24) 

Considering that at the maximum heat flux 
L = 2K,, equation (20) leads to 

a& _. - 
h 

N J&]/2 pyfi3. (25) 

As suggested by Cole [193 at the maximum heat 
flux it is necessary to use for R. the equation 

(Y’ - y”) $: = rr&,af(0) + “ii CD $ $, (26) 

where the first term on the right-hand side 
represents the force due to surface tension, while 
the second one represents the resistance force. 
Evaluating the velocity Ub by #b = 2(dR/dt) and 
using for R equation (l), one obtains 

. (27) 

If we take into account the approximations 
implied in equation (27) it is clear that this equa- 
tion can give only qualitative informations 
concerning R,. Therefore a quantitative com- 
parison of equation (25) with experiment is not 
yet possible. We notice however that the 
exponent of the Reynolds number in equation 
(25) has a value near to the experimental one 
and that in the characteristic length used in 
Nusselt’s number the same quantities appear as 
in the experimental one. 
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R&urn&-Dans cet article, synthese de deux memoires precedents, on etablit une equation donnant 
le coefficient de transmission de chaleur a partir d’une surface horizontale, en utilisant un modtle 

physique des phenomtnes hydrodynamique et de “nucleation”. 

Zasammenfassung-In dieser Arbeit, einer Synthese zweier friiheren 111, 131, wurde eine Gleichung 
fur den Warmeiibergangskoeffizienten von einer waagerechten Oberflache aufgestellt, indem ein 
physikalisches Model1 fur die Blasenbildung und die hydrodynamischen Erscheinungen zugrundege- 

legt wurde. 

hlHOTa~&iJI--H ,'T;LTtd'. flLl.WLLOL&cfL 0606LLLeHML'M J[LlYX Ilpe&bLfl)'LLLMX CTLLTeti [II, 131, HLL 
O,-HOBaHIiH ~M3M'LeCKOII MO~&?LLI lrpO~eCCOBO6p330B3LI~R nyablpbKOBnrnRpORHHaMaKa BbLBO- 

AllTCR )'paBHeHHe KO3~L$ll~HleLLT3 ILepeHOCa TelIJIa OT FOPH3OHTEULbHOA IIOBepXHOCTH. 


